Abstract

In this work, an electrochemical sensor (GCE/MWCNT/Fe3O4@SiO2) based on a composite of multiwalled carbon nanotubes (MWCNT) and an Fe3O4@SiO2 (MMN) nanocomposite on a glassy carbon electrode (GCE) was developed for the detection of tetracycline (TC). The composite formed promoted an increased electrochemical signal and the stability of the sensor, combining its individual characteristics such as high electrical conductivity and large surface area. The composite material was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Mössbauer spectroscopy, and scanning electron microscope (SEM). The adsorptive stripping differential pulse voltammetry (AdSDPV) promoted better performance for the electrochemical sensor and greater sensitivity for TC detection. Under optimized conditions, the currents increased linearly with TC concentrations from 4.0 to 36 µmol L−1 (0.997) and from 40 to 64 µmol L−1 (0.994) with detection and quantification limits of 1.67 µmol L−1 and 4.0 µmol L−1, respectively. The sensor was applied in the analysis of milk and river water samples, obtaining recovery values ranging from 91–117%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.