Abstract
The reaction mechanism of photocatalytic CO2 reduction using rhenium(I) complexes has been investigated by means of a detailed comparison of the photocatalyses of three rhenium(I) complexes, fac-[Re(bpy)(CO)3L] (L = SCN- (1-NCS), Cl- (1-Cl), and CN- (1-CN)). The corresponding one-electron-reduced species (OER) of the complexes play two important roles in the reaction: (a) capturing CO2 after loss of the monodentate ligand (L) and (b) donation of the second electron to CO2 by another OER without loss of L. In the case of 1-NCS, the corresponding OER has both of the capabilities in the photocatalytic reaction, resulting in more efficient CO formation (with a quantum yield of 0.30) than that of 1-Cl (quantum yield of 0.16), for which OER species have too short a lifetime to accumulate during the photocatalytic reaction. On the other hand, 1-CN showed no photocatalytic ability, because the corresponding OER species does not dissociate the CN- ligand. Based on this mechanistic information, the most efficient photocatalytic system was successfully developed using a mixed system with fac-[Re(bpy)(CO)3(CH3CN)]+ and fac-[Re{4,4'-(MeO)2bpy}(CO)3{P(OEt)3}]+, for which the optimized quantum yield for CO formation was 0.59.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.