Abstract

An efficient hybrid model that substantially reduces the sidelobe of the compressed output of the binary phase coded waveforms is suggested by suitably combining a matched filter (MF) and a radial function (RF). The sidelobe suppression is achieved by modulating the MF output by the RF output. Simulation study is carried out to evaluate the performance of standard MF, multilayer artificial neural network (MLANN) and radial basis function neural network (RBFNN) based pulse compressors for binary phase coded pulse compression. The evaluation is based on comparative analysis of the peak to sidelobe ratio (PSR) of the compressed output under noisy as well as Doppler shift conditions. The experimental results demonstrate that the performance of proposed method is significantly superior compared to that of the other standard methods. Further, the hardware requirement of the proposed model is significantly less and unlike other neural networks it does not require training operation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.