Abstract
By integrating the 3D solid modeler with the universal FEM code, an automatic nonlinear analysis system for 3D crack problems has been developed. A geometry model, that is, a solid containing one or several 3D cracks is defined. Multiple distributions of local node density are selected and automatically overlapped with each other over the geometry model using fuzzy knowledge processing. Nodes are created by the bucketing method, and tetrahedral square tetrahedral solid elements are generated by the Delaunay triangulation technique. A complete finite element (FE) model is created and stress analysis is performed. In this system, analysts can significantly reduce the burden of introducing 3D cracks into FE models and estimating fracture mechanics parameters. This paper describes a methodology for realizing such a function and demonstrates the validity of this system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IOP Conference Series: Materials Science and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.