Abstract

Searches for new physics push experiments to look for increasingly rare interactions. As a result, detectors require increasing sensitivity and specificity, and materials must be screened for naturally occurring, background-producing radioactivity. Furthermore, the detectors used for screening must approach the sensitivities of the physics-search detectors themselves, thus motivating iterative development of detectors capable of both physics searches and background screening. We report on the design, installation, and performance of a novel, low-background, fourteen-element high-purity germanium detector named the CAGe (CUP Array of Germanium), installed at the Yangyang underground laboratory in Korea.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.