Abstract

Bacterial cellulose (BC) has emerged as an attractive adsorptive material for antimicrobial agents due to its fine network structure, its large surface area, and its high porosity. In the present study, BC paper was first produced and then lysozyme was immobilized onto it by physical adsorption, obtaining a composite of lysozyme-BC paper. The morphology and the crystalline structure of the composite were similar to that of BC paper as examined by scanning electron microscopy and X-ray diffraction, respectively. Regarding operational properties, specific activities of immobilized and free lysozyme were similar. Moreover, immobilized enzyme showed a broader working temperature and higher thermal stability. The composites maintained its activity for at least 80 days without any special storage. Lysozyme-BC paper displayed antimicrobial activity against Gram-positive and Gram-negative bacteria, inhibiting their growth by 82% and 68%, respectively. Additionally, the presence of lysozyme increased the antioxidant activity of BC paper by 30%. The results indicated that BC is a suitable material to produce bioactive paper as it provides a biocompatible environment without compromising the activity of the immobilized protein. BC paper with antimicrobial and antioxidant properties may have application in the field of active packaging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.