Abstract

ABSTRACTWe are proposing a novel fabrication method for single crystal diamond scanning probes for atomic force microscopy (AFM), exploiting Faraday cage angled etching (FCAE). Common, oxygen-based, inductively coupled plasma (ICP) dry etching processes for diamond are limited with respect to the achievable geometries. The fabrication of freestanding micro- and nanostructures is therefore challenging. This is a major disadvantage for several application fields e.g., for realizing scanning magnetometry probes based on nitrogen vacancy (NV) centres and capable of measuring magnetic fields at the nanoscale. Combining a planar design with FCAE and state-of-the-art electron beam lithography (EBL) yields a reduction of process complexity and cost compared to the established fabrication technology of micro-opto-mechanical diamond devices. Here, we report on the direct comparison of both approaches and present first proof-of-concept planar-FCAE-prototypes for scanning probe applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.