Abstract
Thanks to the rapid development of Wearable Fitness Trackers (WFTs) and Smartphone Pedometer Apps (SPAs), people are keeping an eye on their health through fitness and heart rate tracking; therefore, home weight training exercises have received a lot of attention lately. A multi-procedure intelligent algorithm for weight training using two inertial measurement units (IMUs) is proposed in this paper. The first procedure is for motion tracking that estimates the arm orientation and calculates the positions of the wrist and elbow. The second procedure is for posture recognition based on deep learning, which identifies the type of exercise posture. The final procedure is for exercise prescription variables, which first infers the user’s exercise state based on the results of the previous two procedures, triggers the corresponding event, and calculates the key indicators of the weight training exercise (exercise prescription variables), including exercise items, repetitions, sets, training capacity, workout capacity, training period, explosive power, etc.). This study integrates the hardware and software as a complete system. The developed smartphone App is able to receive heart rate data, to analyze the user’s exercise state, and to calculate the exercise prescription variables automatically in real-time. The dashboard in the user interface of the smartphone App can display exercise information through Unity’s Animation System (avatar) and graphics, and records are stored by the SQLite database. The designed system was proven by two types of experimental verification tests. The first type is to control a stepper motor to rotate the designed IMU and to compare the rotation angle obtained from the IMU with the rotation angle of the controlled stepper motor. The average mean absolute error of estimation for 31 repeated experiments is 1.485 degrees. The second type is to use Mediapipe Pose to calculate the position of the wrist and the angles of upper arm and forearm between the Z-axis, and these calculated data are compared with the designed system. The root-mean-square (RMS) error of positions of the wrist is 2.43 cm, and the RMS errors of two angles are 5.654 and 4.385 degrees for upper arm and forearm, respectively. For posture recognition, 12 participants were divided into training group and test group. Eighty percent and 20% of 24,963 samples of 10 participants were used for the training and validation of the LSTM model, respectively. Three-thousand-three-hundred-and-fifty-nine samples of two participants were used to evaluate the performance of the trained LSTM model. The accuracy reached 99%, and F1 score was 0.99. When compared with the other LSTM-based variants, the accuracy of one-layer LSTM presented in this paper is still promising. The exercise prescription variables provided by the presented system are helpful for weight trainers/trainees to closely keep an eye on their fitness progress and for improving their health.
Highlights
In recent years, home weight training exercises have received a lot of attention
In terms of exercise data quantification, with the rapid development of Wearable Fitness Trackers (WFTs) and Smartphone Pedometer Apps (SPAs), people are keeping an eye on their health through heart rate, fitness, and sleep tracking [1]
This paper successfully developed an integrated system for evaluating and recording weight training exercise performance
Summary
Home weight training exercises have received a lot of attention. Wearable products have become an important tool to help people improve the quality of exercise. In terms of exercise data quantification, with the rapid development of Wearable Fitness Trackers (WFTs) and Smartphone Pedometer Apps (SPAs), people are keeping an eye on their health through heart rate, fitness, and sleep tracking [1]. Gyroscopes are often used for system positioning in many applications, but gyroscopes generate error drift, a low-frequency drift phenomenon over time [3], which accumulates very large orientation errors over time, so that an attitude positioning system cannot use only one gyroscope to achieve accurate orientation. The causes of integration drift can be divided into two categories: one is the linear increase of drift due to the integration of the original offset in the signal, and the other is the integration of noise in the signal [4]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.