Abstract

Sandia National Laboratories and Heat Pipes Laboratory of National Technical University of Ukraine «KPI» have developed several methods of improving robustness of the high-temperature heat pipe wick for their application to concentrating solar power systems with Stirling engine. In this case the wick structures must retain high heat pipe performance with robustness for long-term operation. Recent modeling indicates that wicks based on various fiber combinations could provide the robustness combined with sufficient performance. Results of the development, characterization, modeling, and testing of advanced felt metal wicks that addresses durability issues while maintaining sufficient performance are showed in the paper. The project resulted in an ongoing durability bench-scale heat pipe that simulates wick load conditions required for 80kWth throughput solar receiver, including periodic non-destructive evaluation of the wick durability. Two mock-ups of high-temperature heat pipes were made for long life and performance tests: the first sample with wick based on 12μm fibers; and the second with hybrid wick based on 30μm fibers and 6.5μm fibers. The second heat pipe operation has continued unattended at 775°C vapor temperature for nearly 13,600h, with no observable loss of performance or change in startup characteristics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.