Abstract

The goal of this paper is to advance rollover crash reconstruction techniques beyond the assumption typically made that a rolling vehicle decelerates at a constant rate. The paper presents and applies a planar vehicle-to-ground impact model to explore the manner in which a vehicle’s deceleration rate would be expected to vary over the course of a rollover. Based on this analysis, several possible variable deceleration rate profile shapes are then suggested for rollover crash reconstruction. Then, two rollover crash tests are analyzed to determine the extent to which these suggested variable deceleration rate profiles can be expected to yield accurate reconstructions of the translational and angular velocity histories for actual rollovers. Overall, each of the suggested variable deceleration rate profiles represented a significant improvement over using a constant deceleration rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.