Abstract

The aim of this study was to design a dermal substitute containing adipose derived stem cells (ADSC) that can be used to improve the regeneration of skin on difficult wound beds by stimulating rapid neovascularization. This was achieved by first synthesizing methacrylated gelatin (GelMA) and methacrylated hyaluronic acid (HAMA) precursors which could be stored at-80 oC after lyophilisation. Polymer precursors were then dissolved in media (in 15:1 ratio), ADSCs added together with the photoinitiator and crosslinked with 40s of UV. Hydrogels degraded by 50% over 3 weeks in an invitro environment. ADSC loaded hydrogels could be easily handled with forceps (compressive modulus was 6kPa). Transparency of the gel would allow a full field-of-view of a wound site. The hydrogels provided a suitable microenvironment for ADSC proliferation as shown by the filopodia observed in confocal micrographs. Invivo studies demonstrated that stem cell loaded hydrogels increased vascularization by up to 3 fold compared to their cell free counterparts. In conclusion, GelMA/HAMA hydrogels loaded with ADSC showed the desired proliferative and angiogenic properties essential to promote angiogenesis for wound healing and improving survival of tissue engineered skin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.