Abstract
An ultra-performance liquid-chromatography mass-spectrometry (UPLC-MS/MS) method for simultaneous quantitation of metronidazole and 2-hydroxymetronidazole in human plasma was developed and validated. Metronidazole and 2-hydroxymetronidazole were extracted from a small volume of human plasma (10 μL) by hydrophilic lipophilic balanced solid phase extraction on 96-well μ-elution plates. Chromatographic separation of analytes was achieved on an Acquity UPLC BEH C18 column (1.7 μm, 2.1 × 100 mm) using gradient elution with a blend of 0.1% formic acid in water and 0.1% formic acid in methanol at a flow rate of 0.25 mL/min. Mass spectrometric detection was achieved using multiple reaction monitoring (MRM) in positive-ion electrospray-ionization (ESI) mode. Ion transitions were optimized at m/z 171.85->127.9 for metronidazole and m/z 187.9->125.9 for 2-hydroxymetronidazole. The assay was linear for both analytes over the concentration range of 0.1–300 μM; intra- and inter-assay precisions and accuracies were <13%. Recoveries for metronidazole and 2-hydroxymetronidazole ranged from 88 to 99% and 78 to 86%, respectively. Matrix effects for metronidazole and 2-hydroxymetronidazole in plasma ranged from 102 to 105% and 99 to 106%, respectively. The method was successfully applied to determine metronidazole and 2-hydroxymetronidazole plasma concentrations in a pharmacokinetic study conducted in adults administered an oral dose of 500 mg metronidazole. Pharmacokinetic parameters were comparable to previously reported values. By design, this method is amenable to high sample throughput and has the potential to be automated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.