Abstract

This study sought to establish a chronic total occlusion (CTO) model with cell-mediated calcium deposits in rabbit femoral arteries. CTO is the most severe case in atherosclerosis and contains calcium deposits. Previous animal models of CTO do not mimic the gradual occlusion of arteries or have calcium in physiological form. In the present study we tested the strategy of placing tissue-engineering scaffolds preloaded with cells in arteries to develop a novel CTO model. Primary human osteoblasts (HOBs) were first cultured in vitro on polycaprolactone (PCL) scaffolds with 5 ng TGFβ1 loading for 28 days for precalcification. The HOB-PCL construct was then implanted into a rabbit femoral artery for an additional 3, 10 or 28 days. At the time of sacrifice, angiograms and gross histology of arteries were captured to examine the occlusion of arteries. Fluorescent staining of calcium and EDS detection of calcium were used to evaluate the presence and distribution of calcium inside arteries. Rabbit femoral arteries were totally occluded over 28 days. Calcium was presented at CTO sites at 3, 10 and 28 days, with the day 10 specimens showing the maximum calcium. Chronic inflammatory response and recanalization were observed in day 28 CTO sites. A novel CTO model with cell-mediated calcium has been successfully established in a rabbit femoral artery. This model can be used to develop new devices and therapies to treat severe atherosclerotic occlusion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.