Abstract
It is shown that it is possible to formulate a sum-over-states (SOS) response theory for static perturbations based directly on the Kohn-Sham formulation of density functional theory (DFT). The SOS-DFT response theory affords expressions analogous to those obtained from the classical Raleigh-Schrodinger perturbation theory, where use is made of a complete set of ground and excited state energies and wave functions. The static SOS-DFT response theory is applicable for both real and imaginary perturbations. The theory is established by making use of time-dependent DFT taken to zero frequency with the use of the adiabatic approximation. In the SOS-DFT formulation the expression for electric (e.g., polarization) and magnetic (e.g., magnetization) response properties are symmetrical.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.