Abstract
A species-specific fractionation equation for Arctic charr (Salvelinus alpinus (L.)) was developed experimentally for use in ecological studies of temperature-driven phenologies for the species. Juvenile Arctic charr were reared in controlled conditions at different temperatures (2–14°C), with three replicates of each temperature. Otoliths from the fish and water samples from the chambers were analysed for oxygen isotope composition and used to estimate temperature-dependent fractionation equations relating the isotopic ratio to rearing temperature. A linear and a second order polynomial relationship were estimated and validated using comparable Arctic charr data from another study. Temperatures predicted using the polynomial equation were not significantly different from recorded experimental temperatures, whereas with the linear equation there were significant differences between the predicted and measured temperatures. The polynomial equation also showed the least bias as measured by mean predictive error. Statistical comparisons of the polynomial fractionation equation to a similarly estimated equation for brook charr (Salvelinus fontinalis (Mitchill)) indicated significant differences. Results imply the need for species-specific fractionation equations, even for closely related fish. Results further suggest the polynomial form of the fractionation equation will facilitate more accurate characterisation of water temperatures suitable for use in ecological studies of temperature-driven phenologies of Arctic charr.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.