Abstract

Though accumulated evidence has demonstrated the transformation capacity of human papillomavirus (HPV) type 18 protein E7, the underlying mechanism is still arguable. Developing a protein transduction domain (PTD)-linked E7 molecule is a suitable strategy for assessing the biological functions of the protein. In the present study, HPV18 E7 protein fused to an N-terminal PTD was expressed in the form of glutathione S-transferase fusion protein in Escherichia coli with pGEX-4T- 3 vector. After glutathione-Sepharose 4B bead affinity purification, immunoblot identification and thrombin cleavage, the PTD-18E7 protein showed structural and functional activity in that it potently transduced the cells and localized into their nuclei. The PTD-18E7 protein transduced the NIH3T3 cells in 30 min and remained stable for at least 24 h. In addition, the PTD-18E7 protein interacted with retinoblastoma protein (pRB) and caused pRB degradation in the transduced NIH3T3 cells. In contrast to the pRB level, p27 protein level was elevated in the transduced NIH3T3 cells. The PTD-18E7 protein gives us a new tool to study the biological functions of the HPV E7 protein.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.