Abstract
Two degree of freedom Mechatronic solar tracking system was developed in the present study to improve the performance of photovoltaic cell panels. The present tracking control algorithm was applied on a small prototype, simulating a solar cells panel tracking system, designed and constructed in this work. The Mechatronic tracking hardware section consists mainly of a commercial arduino micro- controller with built in, two servo motor drivers, data input/output, and micro processor modules. Other components of the tracking hardware are, servo motors actuators and four LDR light intensity sensors. A feedback control soft ware program, designed and constructed in the present work, enables the solar tracker to automatically compensate for the sun location's change to enhance the PV cells efficiency. The LDR sensors are employed to continuously detect the sun rays intensity at four, light exposed isolated positions, representing up-right, up-left, down-right, and down-left sides of the solar panel. LDRs data is hence sent to the control software. The data is used to decide proper actuation actions and send them to the servomotors to redirect the PV cells panel perpendicular to incident sun rays. Sensors and actuation signals are exchanged via the in/out data module of the Arduino package. Results of the present experimental work show that using the present tracking system increases the PV cell out power by about 38% compared with that of a fixed collector.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.