Abstract

Several methods have been investigated to increase the efficiency of the operator in teleoperation, but remote devices still cannot be operated efficiently in the presence of the obstacle. In this study, a virtual link and virtual joints were created within the end-effector of the slave robot, and a shared controller was designed to implement an effective obstacle avoidance algorithm for the remote control system. Teleoperation experiments were conducted to verify the algorithm. Completion time and the NASA Task Load Index (NASA-TLX) were measured to evaluate the improvement of teleoperator work efficiency. When the obstacle avoidance algorithm was used, completion time decreased by 8.64%, and the average NASA-TLX decreased by 30.33 % as compared without the algorithm. Our method effectively improved completion time and NASA-TLX scores for both skilled and nonskilled human-operators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.