Abstract

Background & objectives:The pandemic of SARS-COV-2 began in Wuhan, China in December 2019 and has caused more than 101 million cases worldwide. Diagnostic technologies possessing sensitivity and specificity equivalent to real-time reverse-transcriptase polymerase chain reaction (rRT-PCR) assays are needed to ramp up testing capacity in most countries. Newer platforms need to be technically less demanding, require minimum equipment and reduce turn-around time for reporting results. The objective of this study was to exploit loop-mediated isothermal amplification (LAMP) for the detection of SARS-CoV-2 and evaluate its performance by comparison with rRT-PCR.Methods:Reverse-transcription LAMP (RT-LAMP) assay primers were designed to detect envelop (E) and nucleocapsid (N) genes of SARS-CoV-2. Positive control RNA was prepared by in vitro transcription of E and N genes clones. RT-LAMP amplification reactions were incubated at 65°C for 30 min. Results were recorded visually. RT-LAMP results were evaluated by comparing the results obtained with a commercial rRT-PCR kit.Results:The RT-LAMP assay for E and N genes was carried out in separate tubes. RT-LAMP detected about 40 copies of SARS-CoV-2 RNA per reaction. A total of 253 throat swabs were tested using the RT-LAMP assay. The overall diagnostic sensitivity and specificity of the LAMP assay were 98.46 and 100 per cent, respectively, as compared to the rRT-PCR.Interpretation & conclusions:SARS-CoV-2 RT-LAMP assay was designed, standardized and evaluated. The assay showed diagnostic sensitivity and specificity equivalent to rRT-PCR assays. The assay will be useful to increase testing capacity for the detection of SARS-CoV-2 in the country.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.