Abstract

Snyder Robinson Syndrome (SRS) is a rare disease associated with a defective spermine synthase gene and low intracellular spermine levels. In this study, a spermine replacement therapy was developed using a spermine prodrug that enters cells via the polyamine transport system. The prodrug was comprised of three components: a redox-sensitive quinone "trigger", a "trimethyl lock (TML)" aryl "release mechanism", and spermine. The presence of spermine in the design facilitated uptake by the polyamine transport system. The quinone-TML motifs provided a redox-sensitive agent, which upon intracellular reduction generated a hydroquinone, which underwent intramolecular cyclization to release free spermine and a lactone byproduct. Rewardingly, most SRS fibroblasts treated with the prodrug revealed a significant increase in intracellular spermine. Administering the spermine prodrug through feeding in a Drosophila model of SRS showed significant beneficial effects. In summary, a spermine prodrug is developed and provides a lead compound for future spermine replacement therapy experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.