Abstract

In regenerative medicine, it has become increasingly important to collect cultured tissues using non-invasive methods. Enzymatic deadhesion is normally used to collect cells, but this method cannot be used when trying to collect whole tissues in order to avoid damaging cell–cell interactions. In order to resolve this issue, a thermoresponsive culture dish with poly(N-isopropyl acrylamide) (PNIPAAm) has been employed. This system can change its hydrophobicity depending on temperature. Thus, tissues can attach above 37 °C and be detached below 20 °C. However, the PNIPAAm system has some issues related to cost and detachment time. In this study, we developed a novel thermoresponsive detachment system using a polysaccharide derivative. We chose hydroxy butyl chitosan (HBC) as the thermoresponsive polymer because of its high biocompatibility and rapid phase transition. We developed a novel method of HBC synthesis in conditions that were milder than previously reported. We used spin-coating to make a thin coating on two kinds of culture dishes with various concentrations of HBC solution. Seeded cells attached to the surface at less than 0.5 mg/ml HBC coating concentration, and they could be successfully detached by simply lowering the temperature of the suspension dishes without enzymatic treatment; the cells took only 5–20 min to detach. To evaluate this system, we measured three metrics related to cell culturing on culture dishes: initial attachment rate, detachment rate and tissue detachment time. The study revealed that tissues could be detached faster on the suspension dishes used in this study than on PNIPAAm grafted dishes when HBC was coated at 0.5 mg/ml. We successfully developed a novel tissue detachment system using HBC. These results suggest that smart polymers may be useful in regenerative medicine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.