Abstract
Bacterial commensals of the human genitourinary tract, Mycoplasma hominis and Ureaplasma species (parvum and urealyticum) can be sexually transmitted, and may cause nongonococcal urethritis, pelvic inflammatory disease, and infertility. Mycoplasma hominis and Ureaplasma species may also cause severe invasive infections in immunocompromised patients. Current culture-based methods for Mycoplasma/Ureaplasma identification are costly and laborious, with a turnaround time between 1 and 2 weeks. We developed a high-throughput, real-time multiplex PCR assay for the rapid detection of M. hominis and Ureaplasma species in urine, genital swab, body fluid, and tissue. In total, 282 specimens were tested by PCR and compared with historic culture results; a molecular reference method was used to moderate discrepancies. Overall result agreement was 99% for M. hominis (97% positive percentage agreement and 100% negative percentage agreement) and 96% for Ureaplasma species (96% positive percentage agreement and 97% negative percentage agreement). Specimen stability was validated for up to 7 days at room temperature. This multiplex molecular assay was designed for implementation in a high-complexity clinical microbiology laboratory. With this method, >90 samples can be tested in one run, with a turnaround time of 4 to 5 hours from specimen extraction to reporting of results. This PCR test is also more labor effective and cheaper than the conventional culture-based test, thus improving laboratory efficiency and alleviating labor shortages.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.