Abstract

Optimization of retinal prostheses requires preclinical animal models that mimic features of human retinal disease, have appropriate eye sizes to accommodate implantable arrays, and provide options for unilateral degeneration so as to enable a contralateral, within-animal control eye. In absence of a suitable non-human primate model and shortcomings of our previous feline model generated through intravitreal injections of Adenosine Triphosphate (ATP), we aimed in the present study to develop an ATP induced degeneration model in the rabbit. Six normally sighted Dutch rabbits were monocularly blinded with this technique. Subsequent retinal degeneration was assessed with optical coherence tomography, electroretinography, and histological assays. Overall, there was a 42% and 26% reduction in a-wave and oscillatory potential amplitudes in the electroretinograms respectively, along with a global decrease in retinal thickness, with increased variability. Qualitative inspection also revealed that there were variable levels of retinal degeneration and remodeling both within and between treated eyes, mimicking the disease heterogeneity observed in retinitis pigmentosa. These findings confirm that ATP can be utilized to unilaterally induce blinding in rabbits and, potentially present an ideal model for future cortical recording experiments aimed at optimizing vision restoration strategies.Clinical Relevance- A rapid, unilaterally induced model of retinal degeneration in an animal with low binocular overlap and large eyes will allow for clinically valid recordings of downstream cortical activity following retinal stimulation. Such a model would be highly beneficial for the optimization of clinically appropriate vision restoration approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.