Abstract

BackgroundMedical costs and the burden associated with cardiovascular disease are on the rise. Therefore, to improve the overall economy and quality assessment of the healthcare system, we developed a predictive model of integrated healthcare resource consumption (Adherence Score for Healthcare Resource Outcome, ASHRO) that incorporates patient health behaviours, and examined its association with clinical outcomes.MethodsThis study used information from a large-scale database on health insurance claims, long-term care insurance, and health check-ups. Participants comprised patients who received inpatient medical care for diseases of the circulatory system (ICD-10 codes I00-I99). The predictive model used broadly defined composite adherence as the explanatory variable and medical and long-term care costs as the objective variable. Predictive models used random forest learning (AI: artificial intelligence) to adjust for predictors, and multiple regression analysis to construct ASHRO scores. The ability of discrimination and calibration of the prediction model were evaluated using the area under the curve and the Hosmer-Lemeshow test. We compared the overall mortality of the two ASHRO 50% cut-off groups adjusted for clinical risk factors by propensity score matching over a 48-month follow-up period.ResultsOverall, 48,456 patients were discharged from the hospital with cardiovascular disease (mean age, 68.3 ± 9.9 years; male, 61.9%). The broad adherence score classification, adjusted as an index of the predictive model by machine learning, was an index of eight: secondary prevention, rehabilitation intensity, guidance, proportion of days covered, overlapping outpatient visits/clinical laboratory and physiological tests, medical attendance, and generic drug rate. Multiple regression analysis showed an overall coefficient of determination of 0.313 (p < 0.001). Logistic regression analysis with cut-off values of 50% and 25%/75% for medical and long-term care costs showed that the overall coefficient of determination was statistically significant (p < 0.001). The score of ASHRO was associated with the incidence of all deaths between the two 50% cut-off groups (2% vs. 7%; p < 0.001).ConclusionsASHRO accurately predicted future integrated healthcare resource consumption and was associated with clinical outcomes. It can be a valuable tool for evaluating the economic usefulness of individual adherence behaviours and optimising clinical outcomes.

Highlights

  • Medical costs and the burden associated with cardiovascular disease are on the rise

  • It can be a valuable tool for evaluating the economic usefulness of individual adherence behaviours and optimising clinical outcomes

  • With regard to the management of medical resources, it has become clear that adherence to medication and moral hazards among patients are closely related to clinical outcomes and have a significant impact on health behaviours and on socioeconomic factors, including medical costs [10, 11]

Read more

Summary

Methods

This study used information from a large-scale database on health insurance claims, long-term care insurance, and health check-ups. Participants comprised patients who received inpatient medical care for diseases of the circulatory system (ICD-10 codes I00-I99). The predictive model used broadly defined composite adherence as the explanatory variable and medical and long-term care costs as the objective variable. Predictive models used random forest learning (AI: artificial intelligence) to adjust for predictors, and multiple regression analysis to construct ASHRO scores. The ability of discrimination and calibration of the prediction model were evaluated using the area under the curve and the Hosmer-Lemeshow test. We compared the overall mortality of the two ASHRO 50% cut-off groups adjusted for clinical risk factors by propensity score matching over a 48-month follow-up period

Results
Conclusions
Background
Method
Discussion
Limitations
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.