Abstract

This paper presents the design, fabrication, and calibration of a piezoelectric polymer-based sensorized microgripper. Electro discharge machining technology is employed to fabricate the superelastic alloy-based microgripper. It was experimentally tested to show the improvement of mechanical performance. For integration of force sensor in the microgripper, the sensor design based on the piezoelectric polymer PVDF film and fabrication process are presented. The calibration and performance test of the force sensor-integrated microgripper are experimentally carried out. The force sensor-integrated microgripper is applied to fine alignment tasks of micro opto-electrical components. Experimental results show that it can successfully provide force feedback to the operator through the haptic device and play a main role in preventing damage of assembly parts by adjusting the teaching command.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.