Abstract

p38 is a member of the mitogen-activated protein kinase (MAPK) family of serine/threonine kinases, which is activated by cellular stressors and has been shown to be a critical enzyme in the synthesis and action of proinflammatory cytokines, tumor necrosis factor-a (TNF-alpha) and interleukin-1beta (IL-1beta). A group of pyridinyl imidazole compounds such as SB202190 have been identified as selective inhibitors of p38 that bind directly to the ATP pocket of the enzyme. These compounds inhibit the p38 kinase activity, block TNF-alpha and IL-1beta secretion both in vivo and in vitro and are found to be effective in animal models of arthritis, bone resorption, and endotoxin shock. We postulated that other classes of compounds capable of competing the binding of pyridinyl imidazole with p38 enzyme could have efficacy in the treatment of inflammatory diseases. Therefore, a simple and robust assay was developed to measure the ability of small molecules to inhibit the binding of tritium-labeled pyridinyl imidazole, SB202190, to recombinant p38 kinase. For assay development, the human p38 gene was cloned in baculovirus and then expressed in insect cells. Tritiated SB202190 was synthesized and used as the p38 ligand for a competitive filter binding assay. This assay has been used successfully to screen both synthetic and combinatorial chemical libraries for other classes of p38 kinase inhibitors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.