Abstract

Pilot two-stage proportional valves are widely used in high-power hydraulic systems. For the purpose of improving the dynamic performance, reliability, and digitization of the traditional proportional valve, a novel two-stage proportional valve with a pilot digital flow distribution is proposed from the viewpoint of the dual nozzle-flapper valve’s working principle. In particular, the dual nozzle-flapper is decoupled by two high-speed on/off valves (HSVs). First, the working principle and mathematical model of the proposed valve are determined. Then, the influences of the control parameters (duty cycle and switching frequency) and structural parameters (fixed orifice’s diameter and main valve’s spring) on the main valve’s motion are analyzed on the basis of theory, simulation, and experiment. In addition, in optimizing the value of the fixed orifice’s diameter, a new design criterion that considers the maximum pressure sensitivity, flow controllability, and flow linearization is proposed to improve the balance between the effective displacement and the displacement fluctuation of the main valve. The new scheme is verified by simulations and experiments. Experimental results of the closed-loop displacement tracking have demonstrated that the delay time of the main valve is always within 3.5 ms under different working conditions, and the tracking error can be significantly reduced using the higher switching frequency. The amplitude-frequency experiments indicate that a − 3 dB-frequency of the proposed valve can reach 9.5 Hz in the case of ±50% full scale and 15 Hz in the case of 0%–50% full scale. The values can be further improved by increasing the flow rate of the pilot HSV.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.