Abstract

The present study investigates the synthesis and application of the graphene oxide-alumina nanocomposite as a new adsorbent for the dispersive solid-phase extraction of three parabens and their determination using high-performance liquid chromatography-ultraviolet detection. The characterization of the synthesized material was accomplished and its size, morphology, chemical composition, porosity, and thermal stability were studied. Application of the proposed strategy for the synthesis of the nanocomposite resulted in the incorporation of Al2 O3 nanoparticles into graphene oxide nanosheets, further resulting in the exfoliation of graphene oxide nanosheets increasing their surface area. An orthogonal rotatable central composite design was used to optimize the extraction. Under the optimum conditions, the analytical performance of the method showed a suitable linear dynamic range (0.2-100.0μg/L), reasonable limits of detection (0.03-0.05μg/L), and preconcentration factors ranging from 128 to 173. Finally, the new validated method was applied for the determination of parabens in some real samples including wastewater, cream, toothpaste, and juice samples with satisfactory recoveries (88%-109%), and relative standard deviations less than 8.7% (n=3). Results demonstrated that inserting alumina nanoparticles into graphene oxide nanosheets improved the extraction efficiency of parabens, as polar acidic compounds, by providing additional efficient interactions including hydrogen bonding, dipole-dipole, and Brønsted and Lewis acid-base interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.