Abstract

The rate of penetration (ROP) is one of the key factors that affect the drilling costs. Optimizing the ROP is a big challenge as it depends on many factors such as revolutions per minute (RPM), weight on bit (WOB), torque (T), horsepower (HP), and uniaxial compressive strength (UCS) of the drilled rocks. In addition, drilling fluid properties have a major effect on ROP. The main goal of this study is to develop a new ROP model using an artificial neural network (ANN) combined with the self-adaptive differential evaluation (SaDE) technique. The model was built using different drilling mechanical parameters and drilling fluid properties. A new ROP empirical correlation was developed by extracting the weights and biases of the optimized SaDE-ANN model. The optimized ANN architecture based on SaDE is 5-30-1, where five input parameters were used in the input layers to predict the ROP which are drilling fluid density to plastic viscosity ratio, RPM, WOB/D, T/UCS, and HP. The optimized number of neurons was 30 and the output layer consists of one output parameter which is ROP. The data was divided into 60% training and 40% testing. The developed ROP model based on SaDE-ANN showed high accuracy where the correlation coefficient (R) was 0.98 and the average absolute percentage error (AAPE) was 5%. The new ROP empirical correlation outperformed the previous ROP models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.