Abstract
In this study, we report a multiplexed platform for the simultaneous determination of five marine toxins. The proposed biosensor is based on a disposable electrical printed (DEP) microarray composed of eight individually addressable carbon electrodes. The electrodeposition of gold nanoparticles on the carbon surface offers high conductivity and enlarges the electroactive area. The immobilization of thiolated aptamers on the AuNP-decorated carbon electrodes provides a stable, well-orientated and organized binary self-assembled monolayer for sensitive and accurate detection. A simple electrochemical multiplexed aptasensor based on AuNPs was designed to synchronously detect multiple cyanotoxins, namely, microcystin-LR (MC-LR), Cylindrospermopsin (CYL), anatoxin-α, saxitoxin and okadaic acid (OA). The choice of the five toxins was based on their widespread presence and toxicity to aquatic ecosystems and humans. Taking advantage of the conformational change of the aptamers upon target binding, cyanotoxin detection was achieved by monitoring the resulting electron transfer increase by square-wave voltammetry. Under the optimal conditions, the linear range of the proposed aptasensor was estimated to be from 0.018 nM to 200 nM for all the toxins, except for MC-LR where detection was possible within the range of 0.073 to 150 nM. Excellent sensitivity was achieved with the limits of detection of 0.0033, 0.0045, 0.0034, 0.0053 and 0.0048 nM for MC-LR, CYL, anatoxin-α, saxitoxin and OA, respectively. Selectivity studies were performed to show the absence of cross-reactivity between the five analytes. Finally, the application of the multiplexed aptasensor to tap water samples revealed very good agreement with the calibration curves obtained in buffer. This simple and accurate multiplexed platform could open the window for the simultaneous detection of multiple pollutants in different matrices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.