Abstract

This study aimed to develop and investigate the synthesis of 2-ethylhexyl oleate catalyzed by Candida antarctica lipase immobilized on magnetic poly(styrene-co-divinylbenzene) (STY-DVB-M) particles in a magnetically stabilized fluidized bed reactor (MSFBR) operated in continuous mode. The physical properties of the copolymer were characterized by Fourier-transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). The glass transition temperature was 85.68°C, and the onset of thermal degradation occurred at 406.66°C. Syntheses were performed at 50°C using a space time of 12h and a bed porosity of 0.892. Assays were conducted to assess the influence of magnetic field intensity (5 to 15 mT) on reaction yield, ester concentration, and productivity. The highest productivity was 0.850 ± 0.023mmolg-1h-1, obtained with a magnetic field intensity of 15 mT. An operational stability test was performed under these conditions, revealing a biocatalyst half-life of 2148h (179 operation cycles) and a thermal deactivation constant of 3.23 × 10-4h-1 (R2 = 0.9446). Computational simulations and mathematical modeling were performed using Scilab based on ping-pong bi-bi kinetics and molar balances of reaction species. The model provided consistent results of interstitial velocity and good prediction of reaction yields, with R2 = 0.926. These findings demonstrate that the studied technique can provide improvements in biocatalytic processes, representing a promising strategy for the enzymatic synthesis of 2-ethylhexyl oleate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.