Abstract

This thesis reports the process of design and development of a low cost small sized in-pipe inspection robot. Problem of a pipe inspection operation surfaces when the robot only has a limited coverage of the inner surfaces of the pipe. Moreover, current solutions are largely sized and are not appropriate for smaller sized pipelines. Feasibility study completed produced a set of design requirements to be met for the final design to be able to operate inside a pipeline with inner diameter ranging from 80mm to 180mm. The use of magnets was decided as an adhesion system to allow the robot a full range of motion inside the pipe. Technical analyses were completed in parallel with the design work to ensure the design remains up-to-date in case there are changes in the off-the-shelf components used. A prototype of the final design was fabricated. Tests completed successfully demonstrated the robot traversing vertically and upside down on ferromagnetic surfaces, further proving the feasibility of the motor selection analysis. Moreover, the final design prototype managed to successfully satisfy the main objective of the project by being able to fit in a pipe environment with inner diameter ranging from 80mm to 180mm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.