Abstract

This paper presents a linear electrostrictive servo motor with high resolution and large stroke for ultra-precision motion control. High thrust force is obtained by making use of an electromagnetic clamping mechanism with force magnifying structure in the motor design. An operator alterable iterative learning control algorithm is proposed for the motion control of the motor. A prototype is designed, fabricated and tested. Experimental results show that the prototype has a mechanical resolution of 0.02 μm, yaw error less than 2 μm and maximum thrust force of 30N. Applications of the motor include producing the servo feed motions required in micro electrical discharge machining (micro-EDM) system or as a motion control device for other precision machining systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.