Abstract

This paper deals with the viability of using piezoelectric actuators to control the flexural oscillations of large centiliter type structures in space by implementing lab view program based PID control algorithm is to be investigated in the present work. Flexural oscillations are excited by impulsive loads such as stage separations of the rocket. The unwanted/ excessive vibratory response can induce fatigue damages in the subassemblies of the launch vehicle. Piezoelectric actuators have the exerting localized bending moments. In this way, vibration can be controlled without exciting rigid body in the structure. The piezo electric actuators are used in collocated sensor/driver pairs to form a feedback control system. The sensor produces a charge that is proportional to the dynamic stress at the sensor location and the driver produces the vibration that is proportional to the voltage applied to it. The analog control system amplifies and phase shifts the accelerometer response to produce the voltage signal that is applied to the driver. A simulated free-free cantilever beam has been integrated with instruments as a distribution of piezoelectric sensor/drivers to carry out the tests, the estimated and measured vibration control compares favorably.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.