Abstract
Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is a versatile analytical technique that can create qualitative images delineating the spatial distribution of elements in different samples. However, there is no demonstration of this technique in imaging the spatial distribution of elements in soil cores. Herein, we developed a hyperspectral imaging method using LA-ICP-MS to visualize the spatial distribution of selected elements in soil cores as a proof of concept. Soil cores were collected in plastic liners, frozen at −20°C; cut uniformly in halves using a band saw. The surface of the intact cores was ablated using a 213 nm laser optimized with the following parameters: spot size 100 µm, laser energy of 7 mJ, and scan speed of 220 µms−1. Two-dimensional images of the soil cores were created for Ca, Mg, P, K, Na, Zn, Fe, Co, and Mn using the iolite software. The new imaging method was very effective in showing that different crop management systems and fertilizer applications altered the levels and spatial distribution of Ca, Mg, P, K, Na, Zn, Fe, Co, and Mn in the evaluated soil cores. The results show that the developed method has great potential in multi elemental imaging of intact soil cores. This could have huge implications in environmental impact assessments, soil resource evaluation, agriculture crop production and the effectiveness of land use or land management systems in modulating the spatial distribution of elements within the soil.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.