Abstract

Full details of the total synthesis of (+)-caprazol are described. The key elements of our approach include the early stage introduction of the aminoribose in a highly beta-selective manner, using the steric hindrance in the transition state and the construction of the diazepanone by a modified intramolecular reductive amination. The 5'-C-glycyluridine derivative 9, which was prepared stereoselectively via Sharpless asymmetric aminohydroxylation, was ribosylated with 2,3-O-alkylidene ribofuranosyl donors. It was revealed that increasing the size of the alkyl substituents of the acetal unit resulted in improving the stereoselectivity of the anomeric position, and the desired ribosides 21b (1' '-beta) and 22b (1' '-alpha) were obtained in 80% yield (21b/22b = 24.0/1) when the ribosyl fluoride 16 possessing a more sterically hindered 3-pentylidene group was used. The origin of the stereoselectivity of the ribosylation was also discussed. Construction of the diazepanone system was optimized with the model aldehyde 37, and the desired diazepanone 38 was obtained in 88% yield via two-step reaction sequence including catalytic hydrogenation followed by hydride reduction. Application of this method to the aldehyde 44 successfully afforded the diazepanone derivatives 45 and 46, functional group manipulation of which completed the total synthesis of (+)-caprazol.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.