Abstract

A high precision, low dead time, large dynamic range time-to-digital (TDC) architecture, suited to be implemented in Actel flash-based and anti-fuse FPGAs, is presented in this paper. A prototype board has been designed with such a TDC implemented in three different industrial grade FPGAs: an anti-fuse FPGA AX500, flash-based FPGAs APA600 and A3PE1500. Test results showed that a time resolution of 225 ps RMS with a 758 ps averaged bin size was obtained for APA600, while 127 ps RMS with 427 ps bin size for A3PE1500. For a TDC in AX500, a RMS of 37 ps with 75 ps bin size was obtained. Thermal tests suggested that the prototype TDCs operate well in a temperature range from -21°C to +71°C with a constant performance after applying a compensation mechanism utilizing the linear relation between TDC bin sizes and ambient temperature. The TDC structure can be directly migrated into space-qualified FPGAs and applied in space experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.