Abstract

Mathematical modeling of drug transport can complement current experimental and clinical investigations to understand drug resistance mechanisms, which eventually will help to develop patient-specific chemotherapy treatments. In this paper, we present a general time- and space-dependent mathematical model based on diffusion theory for predicting chemotherapy outcome. This model has two important parameters: the blood volume fraction and radius of blood vessels divided by drug diffusion penetration length. Model analysis finds that a larger ratio of the radius of blood vessel to diffusion penetration length resulted in to a larger fraction of tumor killed, thereby leading to a better treatment outcome. Clinical translation of the model can help quantify and predict the optimal dosage size and frequency of chemotherapy for individual patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.