Abstract

The main goal of preoperative planning for patients with pathologies of the musculoskeletal system is to obtain high-quality anatomical and functional results. The solution to this problem could be achieved through the selection of appropriate implants and technique of their installation, which ensure the stability of the structure and reposition of bone fragments, as well as by recreating the optimal biomechanics of the operated segment. All over the world, modern digital technologies are widely introduced into clinical practice. In traumatology, orthopedics and neurosurgery, preoperative planning systems that implement virtual treatment planning allow performing X-ray morphometric measurements on digital radiographs or computed tomography, as well as placing implant templates and selecting their optimal standard size. Typically, several treatment types can be planned for a particular patient, which are successful in terms of geometric preoperative planning. But not each of the planned types can be optimal in terms of assessing the stress-strain state of the studied segment of the spinal pelvic complex. Biomechanical modelling provides the possibility of virtual modelling of orthopedic operations, including the assessment of segment stability and implant "survival". Therefore, it is proposed to use biomechanical modelling as a tool for preoperative planning. In this regard, at the request and with the financial support of the Advanced Research Fund at Saratov University, for the first time, the development of a Russian medical decision support system in surgery of the spinal pelvic complex is being developed, which provides not only the stage of geometric planning of the operation, but also its biomechanical support, as well as predicting treatment results. The aim of this work was to show that biomechanical modelling makes it possible to choose the optimal type of surgical treatment of diseases and injuries of the spine-pelvic complex, and can also be successfully introduced into preoperative planning and successfully function within the framework of the medical decision support system. The paper presents the results of demonstration experiments, in which the optimal treatment types for degenerative diseases of the spine and hip joint were selected using the system. The results of the experiments were consistent with the established clinical practice and literature data, and a group of experts confirmed their clinical viability. It was shown that, together with geometric planning, biomechanical modelling forms a new method (algorithm) for preoperative planning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.