Abstract

Diffuse optical tomography endures poor depth localization, since its sensitivity decreases severely with increased depth. In this study, we demonstrate a depth compensation algorithm (DCA), which optimally counterbalances the decay nature of light propagation in tissue so as to accurately localize absorbers in deep tissue. The novelty of DCA is to directly modify the sensitivity matrix, rather than the penalty term of regularization. DCA is based on maximum singular values (MSVs) of layered measurement sensitivities; these MSVs are inversely utilized to create a balancing weight matrix for compensating the measurement sensitivity in increased depth. Both computer simulations and laboratory experiments were performed to validate DCA. These results demonstrate that one (or two) 3-cm-deep absorber(s) can be accurately located in both lateral plane and depth within the laboratorial position errors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.