Abstract

The interaction of macrocyclic compounds like crown ethers and UO2(2+) has been studied by electrochemical methods. A modified carbon paste electrode incorporating benzo-15-crown-5 (B15C5) was used to evaluate the electron transfer reaction of UO2(2+) by cyclic voltammetry, differential pulse voltammetry, and electrochemical impedance spectroscopy. Electrochemical impedance studies showed that charge transfer resistance was less for the B15C5-modified electrode than for the plain carbon paste electrode (PCPE). On the basis of these observations, a UO2(2+)-sensitive crown ether chemically modified electrode (CME) for trace analysis was fabricated and investigated in aqueous solutions. It was found that a 5% B15C5-CME for UO2(2+) showed a better voltammetric response than did the PCPE. UO2(2+) could be quantified at sub-microg/mL levels by differential pulse voltammetry with a detection limit of 0.03 microg/mL. By differential pulse adsorptive stripping voltammetry, UO2(2+) could be quantified in the working range of 0.002-0.2 microg/mL, with a detection limit of 1.1 microg/L. Simultaneous determination of UO2(2+), Pb(2+), and Cd(2+) was possible. The method was successfully applied to the determination of UO2(2+) in synthetic, as well as real, samples; the results were found to be comparable to those obtained by inductively coupled plasma-atomic emission spectroscopy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.