Abstract

A three dimensional finite element program is developed for the analysis of pavement systems. An explicit approach of the finite element analysis is adopted. This approach results in a vector formulation of the equation of motion. Large displacement is considered through the use of a co-rotational approach which considers small deformations and large rotations of the elements. For the convenience of application a two dimensional finite element program is also developed. An eight-node ¶metric solid element is used for the three dimensional analysis, and a four-node element for the two dimensional analysis. Loading conditions are verified for static ramp and step loadings, sinusoidal loadings, prescribed ground acceleration input, and pulse input. The material library is verified for linear elastic materials, elastic-plastic materials with h&es or Drucker-Prager criteria and assuming associated or non-associated flow rules, and a viscoelastic material of Maxwell type. Three hardening rules are implemented, namely the kinematical hardening, isotropic hardening, and the mixed type. Available analytical data and comparison studies by using ANSYS serve as the basis for the verification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.