Abstract
The article presents modelling of spherical elements based on the developed computer model. We recorded the main combinations of spherical particles during filling, which are formed in the hopper. It was found that the most likely combination that occurs when modelling spherical elements consists of three balls. It should be noted that in the cross-section of such a combination passing through the center of the balls, an equilateral triangle is formed. And in the cross-section of the structure, which consists of four spherical balls, a rhombus is formed, if you connect the centers of these spherical elements. It is worth noting that from this formed combination of spherical elements, it can be seen that the rhombus forms two smaller equilateral triangles that fix the process of pushing the spherical balls apart. In turn, the process of pushing spherical elements apart made it possible to fix the contact between spherical elements, as well as to state the stable position of each (individual) particle. This paper also presents the main fragments of encoding the source text of a 3D computer model for modelling spherical elements, which made it possible to optimize the model parameters. It was found that from the obtained data on the distribution of coordination numbers for different volume fillings of spherical elements, it follows that the largest filling was 72 %, which corresponds to the state when 112 lobules have an average coordination number of 3,92.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.