Abstract

The objective of this study is to develop and design fuzzy-based controllers for experimental examination and application to a laboratory scale sun tracking heliostat with dynamic movement about azimuth and elevation axes. The experimental approach accounts for unknown parameters such as, nonlinear static and dynamic frictions, nonlinear and variant effect of gravity on system, magnetic saturation of motors, limitations of power source in supplying rush and steady current and variation in heliostat dynamics due to different spacial and time passing conditions. To meet the objective, a classical PI and PID as well as Fuzzy-PI (F-PI) and Fuzzy-PID (F-PID) controllers are designed and experimentally implemented. The performance of each controller is measured by means of evaluating a cost function that is based on the integral of absolute value of error signal. The results show that for azimuth-axis angle, the cost of F-PI controller for deviation from set point is 67% lower as compared with that of PI controller. Also, it is shown that the application of F-PI controller results in lower cost for elevation-axis angle by 36%, 40%, and 50%, when compared with PI, PID, and F-PID controllers, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.