Abstract

ObjectivesEnamel damage resulting or arising from/associated with orthodontic treatment such as white spot lesions and surface deterioration after debonding brackets along with incipient carious lesions are considered problems not amenable for routine restorations due to its invasive nature. The present study was aimed at synthesizing and characterizing nHAp and 25 and 50mol% strontium nHAp as a surface application modality for dental enamel remineralization/repair. Methods25 and 50mol% Sr nHAp was synthesized and characterized in comparison with custom made pure nHAp initially with the help of transmission and scanning electron microscopy as well as toxicological assessment. Further, comparative evaluation of these novel synthesized strontium substituted particles was assessed for its efficacy in repairing damaged enamel with the help of atomic force microscopy, scanning electron microscopy and micro indentation testing. ResultsThere is increase in crystallinity and reduced particle size favoring dissolution and re-precipitation through small incipient carious lesions and soft white spot areas with 25% Sr-nHAp. Sr doped specimens showed more cell viability in comparison with pure nHAP make it less cytotoxic and hence a biologically friendly material which can be safely applied in patient's mouth. AFM images obtained from 25% and 50% Sr nHAp treated specimens clearly indicated increased roughness in surface topography and performed well with micro indentation test. SignificanceThe novel synthesized Sr doped nHAp forms an improved treatment modality to tackle the long standing quest for solving the problem of enamel loss with incipient carious lesions and WSL from orthodontic procedures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.