Abstract

Peak power of the Wingate anaerobic test (WAnT), either in W (Ppeak) or in W.kg–1 (rPpeak), has been widely used to evaluate the performance of soccer players; however, its relationship with force–velocity (F-v) test (e.g., whether these tests can be used interchangeably) has received little scientific attention so far. The aim of this work was to develop and validate a prediction equation of Ppeak and rPpeak from F-v characteristics in male soccer players. Participants were 158 adult male soccer players (sport experience 11.4 ± 4.5 years, mean ± standard deviation, approximately five weekly training units, age 22.6 ± 3.9 years, body mass 74.8 ± 7.8 kg, and height 178.3 ± 7.8 cm) who performed both WAnT and F-v test. An experimental (EXP, n = 79) and a control group (CON, n = 79) were used for development and validation, respectively, of the prediction equation of Ppeak and rPpeak from F-v test. In EXP, Ppeak correlated very largely with body mass (r = 0.787), fat-free mass (r = 0.765), largely with maximal power of F-v test (Pmax; r = 0.639), body mass index (r = 0.603), height (r = 0.558), moderately with theoretical maximal force (F0; r = 0.481), percentage of body fat (r = 0.471), fat mass (r = 0.443, p < 0.001); rPpeak correlated with rPmax (largely; r = 0.596, p < 0.001), theoretical maximal velocity (v0; moderately; r = 0.341, p = 0.002), F0 (small magnitude; r = 0.280, p = 0.012), BF (r = −0.230, p = 0.042), and fat mass (r = −0.242, p = 0.032). Ppeak in EXP could be predicted using the formula “44.251 + 7.431 × body mass (kg) + 0.576 × Pmax (W) – 19.512 × F0” (R = 0.912, R2 = 0.833, standard error of estimate (SEE) = 42.616), and rPpeak from “3.148 + 0.218 × rPmax (W.kg–1) + v0 (rpm)” (R = 0.765, R2 = 0.585, SEE = 0.514). Applying these formulas in CON, no bias was observed between the actual and the predicted Ppeak (mean difference 2.5 ± 49.8 W; 95% CI, −8.7, 13.6; p = 0.661) and rPpeak (mean difference 0.05 ± 0.71 W.kg–1; 95% CI, −0.11, 0.21, p = 0.525). These findings provided indirect estimates of Ppeak of the WAnT, especially useful in periods when this test should not be applied considering the fatigue it causes; in this context, the F-v test can be considered as an alternative of exercise testing for estimating the average Ppeak of a group of soccer players rather than for predicting individual scores when the interindividual variation of performance is small.

Highlights

  • Performance in soccer has been shown to rely on movements such as sprinting, passing, shooting, jumping, and change of direction (Lepschy et al, 2021; Longo et al, 2021)

  • In EXP, Ppeak correlated very largely with body mass (r = 0.787), fat-free mass (r = 0.765), largely with maximal power of F-v test (Pmax; r = 0.639), body mass index (r = 0.603), height (r = 0.558), moderately with theoretical maximal force (F0; r = 0.481), percentage of body fat (r = 0.471), fat mass (r = 0.443, p < 0.001); rPpeak correlated with rPmax, theoretical maximal velocity (v0; moderately; r = 0.341, p = 0.002), F0, Body fat percentage (BF) (r = −0.230, p = 0.042), and fat mass (r = −0.242, p = 0.032)

  • Ppeak in EXP could be predicted using the formula “44.251 + 7.431 × body mass + 0.576 × Pmax (W) – 19.512 × F0” (R = 0.912, R2 = 0.833, standard error of estimate (SEE) = 42.616), and rPpeak from “3.148 + 0.218 × rPmax (W.kg−1) + v0” (R = 0.765, R2 = 0.585, SEE = 0.514). Applying these formulas in CON, no bias was observed between the actual and the predicted Ppeak and rPpeak. These findings provided indirect estimates of Ppeak of the Wingate anaerobic test (WAnT), especially useful in periods when this test should not be applied considering the fatigue it causes; in this context, the F-v test can be considered as an alternative of exercise testing for estimating the average Ppeak of a group of soccer players rather than for predicting individual scores when the interindividual variation of performance is small

Read more

Summary

Introduction

Performance in soccer has been shown to rely on movements such as sprinting, passing, shooting, jumping, and change of direction (Lepschy et al, 2021; Longo et al, 2021). Performing the WAnT might be contraindicated during congested fixture periods or periods of intense training (Freitas et al, 2021). In such periods, additional exercise testing fatigue would be undesirable considering that WAnT might lead to blood lactate concentration higher than 11 mmol.L−1 in soccer players (Keir et al, 2013; Thom et al, 2020) and athletes of other sport (Jemni et al, 2006), and the use of surrogate measures of short-term muscle power might be an alternative

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.