Abstract

Therapeutic drug monitoring (TDM) of cardiovascular drugs is essential to improve treatment efficacy and minimize toxicity because of the usage of multiple drugs with a very limited therapeutic range and the high pharmacokinetic variation in patients. We developed and validated a reliable and economical liquid chromatography/tandem mass spectrometry (LC-MS/MS) method for the determination of seven cardiovascular drugs—procainamide, lidocaine, quinidine, deslanoside, digoxin, atorvastatin, and digitoxin—for clinical usage. Serum samples were prepared by simple protein precipitation with an organic solvent consisting of acetonitrile and methanol (2:1 v/v) and analyzed under optimized LC-MS/MS conditions. The chromatographic separations were accomplished within 15 min on a reversed-phase C18 column with a gradient elution of aqueous solvent and acetonitrile while maintaining 0.1 (v/v) % formic acid and 2 mM ammonium formate. The optimized MS/MS conditions in ESI-positive mode offered sufficient sensitivity for the seven cardiovascular drugs (LOQs between 0.5 and 1 ng/mL). This method was fully validated including linearity, selectivity, accuracy, precision, carry-over, and matrix effects. Additionally, stability under several conditions was tested to determine how to handle the standard solutions and serum samples. The seven cardiovascular drugs, simultaneously, were precisely and accurately analyzed in intra- and inter-day assays (RSD < 6 % and recovery between 96.3 and 102.8 %) using only two isotope-labeled internal standards (lidocaine-(diethyl-d10) and digoxin-21, 21, 22-d3). The presented method also showed good accuracy in analyzing the seven drugs in hyperlipidemia, hyperalbuminemia, and hyperglycemia serum, allowing it to be recommended as a common and routine analysis method for cardiovascular drugs in clinical practice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.