Abstract

Conventional tools for measuring dietary exposure have well recognized limitations. Measurement of food-derived metabolites in biofluids provides an alternative approach and our aim was to develop an experimental protocol which ensures that extraneous variability does not obscure metabolic signals from ingested foods. Healthy adults consumed a standardized meal in the evening before each test day and collected pooled overnight urine. On each test day of three different studies, urine was collected in the fasted state and at different time points after consumption of a standardized breakfast. Metabolite fingerprinting of samples using Flow Infusion Electrospray-Ionization Mass Spectrometry followed by multivariate data analysis showed strong discrimination between overnight, fasting and postprandial samples, in each study separately and when data from the three studies were pooled. Such differences were robust and highly reproducible within individuals on separate occasions. Urine volume was an efficient data normalization factor for metabolite fingerprinting data. Postprandial urines had a stable chemical composition over a period of 2–4 h after eating a standardized breakfast, suggesting that there is a flexible time window for urine collection. Fasting urine samples provided a stable baseline for universal comparisons with postprandial samples. A dietary exposure biomarker discovery protocol was validated by demonstrating that top-ranked signals discriminating between fasting and 2–4 h postprandial urine samples could be linked to metabolites abundant in some components of the standardized breakfast. We conclude that the protocol developed will have value in the search for biomarker leads of dietary exposure.Electronic supplementary materialThe online version of this article (doi:10.1007/s11306-011-0289-0) contains supplementary material, which is available to authorized users.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.