Abstract

ABSTRACTA multiresidue method was studied for determination of 323 pesticides representing a wide range of physicochemical properties in dry herbs (chamomile and parsley) based on QuEChERS method and LC-ESI-MS/MS analysis. In the current study, three different parameters were optimised for a higher accuracy and a lower matrix effects: extraction procedures, cleanup and matrix effect. Optimum extraction efficiency was obtained at sample hydration of 10 mL water on 2 g dry herbs and soaking time for 10 min. Use of different extraction techniques supported the use of mechanical shaker in comparison with ultrasound and handed shaking. As a way to remove interfering components from final extract, different cleanup techniques were studied: three dispersive solid phase extraction (D-SPE) (C18, primary secondary amine and graphitised carbon black) have been investigated; matrix effect was reduced, but several pesticides were lost during the cleanup process. Unlike the SPE (hydrophilic lipophilic balanced polymer) produced a good recovery with all substances without expected reduction in matrix effect. Moreover, sample dilution and LC-MS/MS injection volume were studied, 3 µL injection volume was found to be the best sensitive condition without sample dilution. The developed method was validated by performing recovery tests at 0.01, 0.05 and 0.1 mg/kg, the average recoveries ranged from 70% to 120%. The reproducibility expressed as relative standard deviation (RSD %) was ≤ 20%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.