Abstract

Large amounts of biological samples are usually required to measure multiple components by the enzyme-linked immunosorbant assay. However, the amounts of many tissue extracts and fluids, including gingival crevicular fluid (GCF), are generally extremely small. The aim of this study was, therefore, to develop and validate a novel multiplex bead assay (MBA) to simultaneously measure a profile of healing-related mediators in the GCF of treated periodontal wounds. An MBA was developed and validated by assessment of assay selectivity, recovery, precision and sensitivity, using eight recombinant human growth mediators as assay standards. GCF samples were collected on paper strips from healing wound (test) and healthy unaffected (control) sites of 15 patients with periodontitis, seven days post-periodontal surgery. Each GCF sample was eluted and the levels of the mediators measured using the MBA and antibody pairs specific for angiopoietin-1, vascular endothelial growth-factor, bone morphogenetic protein-2, osteoprotegerin, tissue inhibitor of metalloprotease-1 (TIMP-1), basic fibroblast growth-factor, keratinocyte growth-factor, and platelet derived growth-factor. Less than 1.8% of cross-reactivity was observed between antibodies and the eight different analytes, for which the recovery was more than 85%. Mean intra- and inter-assay precision were within the acceptance criteria of 20% and 25%, respectively. Detection of all mediators was highly sensitive (<or=70 ng/L) except for TIMP-1 (215 ng/L). Angiogenic factors were the most highly secreted in the GCF seven days post-surgery. This new MBA can simultaneously measure small amounts of eight different growth mediators in the GCF of healing periodontal wounds. It might also be a valuable tool for evaluating the components of wound fluids as a prognostic indicator of the success of therapeutic intervention.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.